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Abstract. In this paper, a model of a focused beam with circular symmetry is 
presented. The acoustic field is defined by a Gaussian surface velocity distribution 
along the emitter immersed in a fluid. The pressure field is described by a Fourier 
integral representation, and is evaluated asymptotically using a generalized 
steepest descent procedure. Simple analytical expressions for the acoustic 
pressure along the axis are obtained, and the variation of the pressure field as  a 
function of distance from the emitter is illustrated. 

1. Introduction 

Theoretical studies consecrated to evaluation of the 
ultrasonic field generated from focused transducers were 
developed in the past. With the assumption of small 
wavelengths with respect to the width of the emitter 
(the hypothesis of short waves or high frequencies), 
those beams described mathematically by the Rayleigh 
integral or by a Fourier representation were evaluated 
using the Fresnel approximation [1-6], the parabolic 
approximation [7],  or the paraxial approximation [8,9]. 

O’Neil [ I ]  modelled a focused acoustic beam by 
considering a concave transducer vibrating at a uniform 
normal velocity. Under the hypothesis of short waves, 
he approximated the potential of velocities using Green’s 
formulation, which is only valid in the case of a plane 
acoustic source. This model finally gives an analytical 
expression for both acoustic pressure and intensity along 
the axis of symmetry of the beam and in the focal plane. 

Cavanagh and Cook [2,3] modelled a focused 
acoustic beam by using a plane transducer together 
with a lens positioned at a certain distance from the 
transducer. In order to obtain an analytical solution 
for the acoustic pressure field, the authors used the 
Rayleigh-Sommerfeld formulation based on Huygen’s 
principle, which consists of describing the acoustic 
pressure outside the source as a superposition of 
divergent spherical waves. The obtained analytical 
expression for the pressure field was in an integral form 
and has been evaluated using Fresnel’s approximation 
and by means of Laguerre-Gaussian functions. Finally, 
the acoustic pressure was obtained using a simple 
numerical method. 

Lucas and Muir [5] considered a concave transducer 
and used the Rayleigh-Sommerfeld formulation. Using 
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Fresnel’s approximation and by means of the hypothesis 
of high frequencies, they obtained a well-collimated 
beam. The authors finally evaluated the acoustic 
pressure on the acoustic axis. 

Filipczynski and Etienne [6] considered a spherical 
transducer vibrating with a Gaussian velocity profile. By 
means of the hypothesis of short waves and Fresnel’s 
approximation, the Rayleigh integral has been evaluated 
and the pressure of the focused Gaussian beam on the 
acoustic axis was finally obtained. 

Pott and Harris [8,9] modelled a focused Gaussian 
beam by considering an acoustic monopole with complex 
spatial coordinates. Using the paraxial approximation, 
the normal velocity of the monopole was made to 
correspond to a Gaussian distribution. The paraxial 
approximation consists of taking into account a restricted 
area of the beam; in that area only, the beam appears to 
be of Gaussian type. This method of modelling a focused 
beam does not imply any assumption regarding the very 
structure of the beam, but is based on spatial limitation 
of the beam. Contrary to the paraxial approximation, in 
the cases of the parabolic approximation [7] or Fresnel’s 
approximation [l-61, the beam is of Gaussian type by the 
definition of its structure. Both paraxial and parabolic 
approximations and also Fresnel’s approximation are 
equivalent in terms of obtaining the final expression for 
the acoustic pressure. 

More recently, a two-dimensional model has 
been proposed for studying Gaussian focused beams. 
By using the steepest descent procedure, analytical 
expressions for the pressure field were obtained for 
any point in space, including the neighbourhood of the 
caustic and the focal point [10-13]. 

In order to complete our previous studies, we present 
here a model of a Gaussian focused beam with revolution 
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with Jo(rk,) the Bessel function of order zero, defmed 
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Figure 1. Configuration of the disposition. 

symmetry. This paper is not based on any of the above 
assumptions (Fresnel, paraxial or parabolic), which 
consist of considering a highly directional ultrasonic 
beam. The incident beam is defined here by its normal 
velocity distribution along the plane-emitter placed in a 
fluid medium. The Fourier integral representation of the 
acoustic field along the axis is evaluated asymptotically, 
by means of a generalized method of steepest descent. 

2. The model 

Let us consider a Gaussian focused beam generated by 
a plane, circularly symmetric emitter placed in a fluid of 
mass density p and sound velocity c (figure 1). 

In order to describe the circular symmetry, we use 
polar coordinates: 

x = r c o s O  y = r s i n e  

k, = k, cos (o 

The Gaussian normal velocity distribution of particles 
along the emitter plane is given by 

k, = k, sin (o. 

(1) vn (,., 0) = ~ ~ ~ - ( r / a ) ' ~ - i k  sin W(r'/a)e-iwi 

where a is the radius of the emitter, 00 the focalization 
angle, k = o / c  is the wavenumber in the fluid, w is the 
angular frequency, and r = ( x z  + z2)'/' is the spatial 
variable. 

The acoustic pressure in a plane situated at a distance 
z from the emitter (the x-y plane), is given by plane- 
wave superposition in the form of a Fourier integral: 

k,A(k,) Jo(rk,)eik2" dk, (2) 

with k, = (kZ-k:)1/2 where the function k,  is chosen real 
and positive for lk,l i k and imaginary and positive for 
lkrJ > k, and A(k,) is the Fourier transform of P(r, 0): 

rP(r ,  O)Jo(rk,) dr (3) Zn 

Jdrk,) = & lh exp[-irk, cos(@ - (o)]d@. (4) 

From the equation gradP = -paV, /a t ,  we obtain 
P(r, 0) = Vn(r, O)pw/k,  and thus 

(5) lm re-fi'r2 Jc,(rk,) dr A(k,) = - 
2nk, 

where 
1 iksinBo 

E =:+-. , a ' .  a 

By expanding the Bessel function as a power series, 
equation (5) becomes 

.. . 

(6) 
On changing the variables such that t --f BZrZ, it follows 
that 

(7)  

From the definition of the gamma function 

dt 

equation (7) can be simplified to 

By using the identity 

we obtain 

Pf&l 1 
4nk, a-2 + i(k/a) sin So 

A(k,) = - 

x exp[-k:/4(a-' + ika sineo)]. (9) 

Thus, the acoustic pressure field (equation (2)) is given 
by the expression 



T E Maths 

where i = r ia ,  i = z/a, k,  = k,/k and kz = kJk are 
non-dimensional quantities. 

Finally, by assuming the hypothesis of short waves 
(ka >> 1). the pressure field is written in the form 

pcV,ka 
1411 sin 0, 

P ( i ,  i) = . 

x (1 - i y / z d L ,  + O(1). (11) 

Thus, the acoustic pressure on the axis is given by the 
expression 

-2 112- k? for) = (1 - k,) z + -. 4 sin 0, 

Let us suppose that the characteristic width of the 
beam, a, is large relative to the emission wavelength, 
A = h / k ,  the parameter ka is thus much larger than 
I ;  hence the integral (13) can be evaluated by the 
asymptotic method of steepest descent. This method 
consists of replacing the initial integration path by a 
new path passing through the saddle-points of the phase 
function of the integral, f ( k , ) ,  defined by the equation 

f'(Yi) = 0 

which has three solutions: 

yI  = +[I - (2sin0, i )~]~/~ 

YZ = 0 
- 2 112 y3 = -[I - (2sinOoz) 1 . 

Since the integration path is [0, +cat, the negative 
solution is not taken into account. 

We distinguish the following two cases. 

(i) If z > n/2sinBo there are real saddle-points at y2. 
(ii) If z < a/2sinBO there are two real saddle-points 

at yI and yz (z  = a/2sinOo being the position of the 
focal point). 
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When a saddle-point is situated near the integration 
limit, the classic steepest descent method (used in [ 10- 
131) is not applicable. A generalized method [I41 is 
thus applied (see the appendix), in order to evaluate 
analytically the integral (13). 

Thus, from equation (A14) we obtain the contribu- 
tion of the saddle-point y2 = 0 

e w i / 2  I =  eikvi  (14) 
kaI& -21 

with 

and from equation (A13), the contribution of the saddle- 
point y~ is 

I = e  iko f (O)+ipn/4 

v = 421f(YI) - ZD1/*  

and p = 1 (as i < 1/(2sinBo), this is necessarily so). 
In case (i), only the contribution of the saddle-point 

y2 intervenes. Thus, the acoustic pressure for that part 
of the axis is 

In case (ii), both saddle-points y, and yz intervene. Thus, 
the acoustic pressure for that part of the axis is 

-eik"ig(yl)(ka)'/2 -- - P(0,  2 )  
PCVO 4zsin&(2f"(y1)lf(yl) - WZ 

eik.ai + + O(l/ka) (17) 
4n sin eo (A - i) 

with 

Wo[(ka)'/zqei"/4] 

Figure 2 illustrates the pressure field on the acoustic axis 
as a function of distance from the emitter. The maximum 
value corresponds to the position of the focal point. 
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!J = sgn[f"(y; Y)1 ('42) 
and the integral (Al) is written in the form 2.5 I 

Peakcomspooding 
tolhErOealpoim 

$=- a 
2 sine, 

I S 1  

Figure 2. Profile of the acoustic pressure along the axis. 

3. Conclusion 

In this paper, a model of a Gaussian focused beam 
generated from an emitter of circular symmetry is 
presented. The symmetry of revolution is introduced 
using polar coordinates. The acoustic pressure field is 
obtained by plane-wave superposition in the form of a 
Fourier integral. By adopting the hypothesis of short 
waves, this integral is expanding asymptotically using a 
generalized steepest descent procedure. Finally, simple 
analytical expressions for the pressure field along the 
axis are obtained, and the acoustic pressure as a function 
of the distance from the plane emitter is illustrated. 

Pulsed acoustic fields can be used to validate the 
model (which considers the monochromatic regime). 
The technique consists of Fourier transforming the 
experimental signals and, by selecting the appropriate 
frequency, experimentally evaluating the acoustic 
pressure field. This work is the objective of a companion 
paper. 
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Appendix. Asymptotic analysis of integrals in 
the case of a saddle-point situated near zero; 
zero being one of the integration bounds 

Let us consider the integral 

I ( K )  = g(r)eiKf("dr (AI) 

with K >> 1. y is the saddle-point of the phase function 
f(t), defined by the equation f ' ( y )  = 0, and g(r) is an 
analytic function verifying that g(0) = 0. Integral (Al) 
can be evaluated asymptotically by using a generalized 
method of steepest descent (the classical method is not 
valid in the case of a saddle-point near zero). 

Lm 

On changing variables such that t = t(z), we have 

where q is a function of the saddle-point y .  From (A2) 
we obtain 

(A4) 

In order to replace the exponent in (A3) by a real 
and negative quantity, the integration path is rotated by 

z = < exp(pir/4). 

v = -(sgny)dZIf(y; v) - f(0 v)l. 

!JR/4: 

Thus, the integral (A3) is written as 

I f K )  = expliKf(0; y )  + i ~ r / 4 1  J(K) (A5) 

J ( K )  = G(y)e-K"Z+t'/2) dy (-46) 

where 

1- 
with G(<)  = g(t)dr/dz and b = 77e-i@/4. 

By expanding we get 

G ( O = & + C &  + < ( t + b ) G i ( O  

where 80, 61 and GI will be determined. The integral 
(A6) is written in the form 

where the function Wo(s) is 

+m 
WOO) = 1 e-(sr+r2/2) 

as defined from Weber's function &(is) by the equation 

wo(s) = c exp(s2/4) &(is) 

where C = ( Z R ) ' ~  and J l ( K )  is defined by 

Ji(K) = l + m 5 ( 5  +b)GifS) 

exp ['K (; + b y ) ]  dy. 

After integration by parts, (A8) becomes 

J 1 ( K )  = [ G I W  + KGi(t) l  
1 +m 

xexp[-K(:+b<)] d<. 

We apply now the same procedure for the integral J I  ( K )  
as we did for the integral J ( K ) .  By expanding 
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in equation (A9), the integral (A7) can be written as 

with 

By continuing the same procedure, we obtain the final 
result in the form of an asymptotic series: 

where the constants SO and SI are given by 

= 11-1 G(0) - G(-b) 
b 

61 = 

and the function WO(JKb) is defined by 

W0(,/Kve-”’”I4) 

By replacing (A12) in (AS), we finally obtain an 
analytical expression for the integral (Al): 

I ( K )  x exp(iKf(0) + ipz/4) 

In the case of a saddle-point equal to zero, expression 
(A13) can be simplified to 
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